Sounds that do not exist
Let's listen to a tape recording of sacred music - Tibetan monks or Gregorian singing. If you listen, you can hear how the voices merge, forming one pulsating tone. This…

Continue reading →

March guides: 6 new albums of classical music
Classics do not die because they play it all the time. And they play it because it is a classic. Iron logic. But in fact, in fact: each generation finds…

Continue reading →

Music video: five new recordings of the classics
No, perhaps, nothing is more melancholy than a textbook, played stupidly on notes with only one care - not to fix. As there is nothing more depressing than a modern…

Continue reading →

Why does music heal?

Almost everything that happens in nature is connected with the world of sounds. In any case, in wildlife. It can be considered proven that music affects us, plants, and animals.

Music is increasingly serving health. There was already a special, albeit not very extensive yet, area of ​​medicine – music therapy. In the first place, it treats neuropsychiatric diseases: sessions of music therapy under the guidance of psychotherapist doctors have become firmly established in medical practice.

And in recent years, sound effects are increasingly used for the treatment of somatic, bodily diseases. Thus, the magazine “Inventor and Rationalizer” has recently told in detail (in No. 5, 1986) about the experience of the doctor A.R. Guskov: using sound, he removes stones from the ureter.

Experienced material about the healing effects of music has accumulated a lot; works, revealing the mechanisms of its impact on humans, much less. But, without penetrating into the essence of the phenomena that occur in the body when exposed to sounds, it is difficult to develop and improve music therapy.

So let’s try to speculate about these mechanisms, taking into account the data of biophysics, biochemistry and medicine.

Imagine a piece of music as a certain sequence of signals – mechanical oscillations in an elastic medium, lying in the frequency range 10-20000Hz. For some processes in the human body, and, above all, for enzymatic reactions, the same frequencies are characteristic.

The work of the enzyme is associated with a change in its shape, that is, with the mechanical movement of part of the protein macromolecule: it is compressed and decompressed when each molecule of the substrate substance is processed. The number of such molecules processed by an enzyme molecule per unit of time is called the number of revolutions of the enzyme; it is a measure of the rate of an enzymatic reaction.

As far back as 1968, Professor S.E. Shnol (Institute of Biological Physics, Academy of Sciences of the USSR) compared the revolutions of enzymes with the frequency characteristics of a musical scale. It turned out that for many enzymes involved in the most important exchange processes, these numbers correspond to the frequencies of the musical notes of the European sound series.

So, in cytochrome reductase, which is included at the most important stage of providing the body with energy – with the assimilation of oxygen, the number of revolutions per unit of time is 183 Hz, which is very close to the note of a small octave (185 Hz).

Enzymes that promote the absorption of glucose, the universal energy store in the body, phosphorylase and glucomutase, have rotational speeds of 676, 1600, and 280 Hz. For comparison: the second octave of the second octave is 659 Hz, the salt of the second octave is 1567 Hz, before the sharp of the first octave is 277 Hz.

Since the frequency characteristics are so close, is it possible to assume the possibility of a direct effect of music on certain biochemical processes?

The joint work of enzymes creates the acoustic field of the cell. Probably, the regulating effect of music on the body is due to the fact that its acoustic field is superimposed on the body’s own acoustic field.

The analogy may be somewhat rough, but the enzyme can be compared to a tuning fork that starts to sound – in our case, to catalyze a biochemical reaction – under the influence of sound, the frequency of which coincides with its natural frequency, which leads to a resonance.

Biochemical processes are systems of coupled enzymatic reactions. In order to regulate the operation of these systems, it is enough to influence the single, slowest reaction that inhibits the whole process.

For processes occurring in different organs, the enzymatic reactions that determine the overall rate of transformation are different, so the sensitivity of organs to sounds of different frequencies must be different.

But if so, then each organ system must have its own “musical score” – the most effective set of sound vibrations, the frequency of which is determined by that very constraining, slowest response.

Analyzing the revolutions of enzymes, we can assume that the stomach is most sensitive to a low register (the frequency of revolutions in digestive enzymes is very low, about 10 Hz), and high frequencies correspond to respiration and transmission of nerve impulses (carbonic anhydrase enzyme – 40000 Hz, acetylcholinesterase – 14000 Hz) . Changing reaction conditions changes the frequency of turns: a full stomach “sings” in a higher voice.

A direct effect on enzymes, of course, is not the only possible mechanism for the biological action of music. Studies of cell membranes have shown that in some cases the channels through which ions necessary for its normal operation enter the cell behave like oscillatory circuits, whose natural frequencies lie within the acoustic range.

Thus, the effective frequency that changes the rate of Ca2 + ion yield is 15 Hz, and if the cell is affected by the sounds of this frequency, we can expect a sharp jump in the concentration of calcium ions. Indeed, under the action of electromagnetic oscillations with a frequency of 15 Hz on artificially cultured brain cells, a multiple acceleration of the output of calcium ions was observed.

Recall that calcium ions are the most important regulatory agent of cellular metabolism. And since the cell membrane is charged (its potential is about 100 Mv), similar results can be expected in the case of electrical or mechanical vibrations.

Of course, this is still a fantasy, but, nevertheless, it cannot be excluded that in the future, not so distant, a completely scientific musical pharmacopoeia will be created for the needs of music therapy – a set of sound recipes. Reproduced musical instruments, they will directly affect the diseased organ …

Camera obscura: four new albums with classics
Let's talk about the chamber genre. Trio, quartet, quintet - that's all. The spring of 2019 brought a lot of beauty in this field: Shostakovich's canonical quintet, Yevgeny Kissin's only…


Music makes the brain work
Not so long ago, American scientists conducted an experiment in which it became clear that music helps a lot - for example, in reading and concentration. According to Nina Kraus,…


Music and the brain of a child
According to numerous studies, the use of music as an additional sensory flow greatly improves the speech function in children of preschool age. Any activity, in particular, intellectual, is provided…


Music makes the brain work
Not so long ago, American scientists conducted an experiment in which it became clear that music helps a lot - for example, in reading and concentration. According to Nina Kraus,…